Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Explor Target Antitumor Ther ; 4(2): 227-239, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37205312

RESUMO

Aim: This study was designed to investigate the anticancer efficacy of the organic leaf extracts of the plant, Plectranthus vettiveroides (P. vettiveroides), and to analyze the molecular mechanism of the anticancer activity. Methods: The leaf extracts were prepared by polarity-graded serial extraction of the dried leaf powder. The cytotoxic effect of the extracts was analyzed by the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The most active ethyl acetate extract was subjected to bioactivity-guided fractionation by column chromatography, which yielded a cytotoxic fraction designated as the P. vettiveroides fraction (PVF). The anticancer property of PVF was confirmed further by clonogenic assay. The mechanism of PVF-induced cell death was analyzed by flow cytometry and fluorescence microscopy. Additionally, the effects of PVF on apoptotic and cell survival pathways were analyzed using western immunoblot analysis. Results: A bioactive fraction PVF, was isolated from the ethyl acetate leaf extract. PVF showed significant anticancer activity against colon cancer cells, whilst normal cells were comparatively less affected. PVF induced strong apoptotic stimuli in colorectal carcinoma cell line HCT116, involving both extrinsic and intrinsic pathways. Investigation into the molecular mechanism of anticancer activity of PVF in HCT116 cells revealed that the fraction activates the pro-apoptotic pathway via tumor suppressor protein 53 (p53) and inhibits the anti-apoptotic pathway by regulating phosphatidylinositol 3-kinase (PI3K) signaling. Conclusions: The findings of this study demonstrate, with mechanism-based evidence, the chemotherapeutic potential of a bioactive fraction PVF, derived from the leaves of the medicinal plant P. vettiveroides against colon cancer.

3.
Cell Mol Life Sci ; 79(9): 478, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948813

RESUMO

Melanoma is the most aggressive among all types of skin cancers. The current strategies against melanoma utilize BRAFV600E, as a focal point for targeted therapy. However, therapy resistance developed in melanoma patients against the conventional anti-melanoma drugs hinders the ultimate benefits of targeted therapies. A major mechanism by which melanoma cells attain therapy resistance is via the activation of microphthalmia-associated transcription factor-M (MITF-M), the key transcription factor and oncogene aiding the survival of melanoma cells. We demonstrate that tryptanthrin (Tpn), an indole quinazoline alkaloid, which we isolated and characterized from Wrightia tinctoria, exhibits remarkable anti-tumor activity towards human melanoma through the down-regulation of MITF-M. Microarray analysis of Tpn-treated melanoma cells followed by a STRING protein association network analysis revealed that differential expression of genes in melanoma converges at MITF-M. Furthermore, in vitro and in vivo studies conducted using melanoma cells with differential MITF-M expression status, endogenously or ectopically, demonstrated that the anti-melanoma activity of Tpn is decisively contingent on its efficacy in down-regulating MITF-M expression. Tpn potentiates the degradation of MITF-M via the modulation of MEK1/2-ERK1/2-MITF-M signaling cascades. Murine models demonstrate the efficacy of Tpn in attenuating the migration and metastasis of melanoma cells, while remaining pharmacologically safe. In addition, Tpn suppresses the expression of mutated BRAFV600E and inhibits Casein Kinase 2α, a pro-survival enzyme that regulates ERK1/2 homeostasis in many tumor types, including melanoma. Together, we point to a promising anti-melanoma drug in Tpn, by virtue of its attributes to impede melanoma invasion and metastasis by attenuating MITF-M.


Assuntos
Melanoma , Fator de Transcrição Associado à Microftalmia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases , Melanoma/genética , Camundongos , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Quinazolinas
4.
Front Oncol ; 11: 656804, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34336653

RESUMO

BACKGROUND: The ongoing treatment modalities for breast cancer (BC) primarily rely on the expression status of ER, PR and HER-2 receptors in BC tissues. Our strategy of chemosensitization provides new insights to counter chemoresistance, a major obstacle that limits the benefits of chemotherapy of mammary cancers. METHODS: By utilizing a murine breast cancer model employing NSG mice bearing orthotopic triple-negative breast cancer (TNBC) xenografts, we have evaluated the ability of phytochemical curcumin in chemosensitizing BC to 5-Fluorouracil (5-FU) chemotherapy and the differential modulations of cellular events in response to this strategy, independent of their receptor status. RESULTS: A significant synergistic antitumor potential was observed in the murine model with a sub-optimal dose treatment of 5-FU plus curcumin, as evaluated by a reduction in the tumor-related parameters. We authenticated the pivotal role of thymidylate synthase (TS) in regulating the 5-FU-curcumin synergism using the TNBC pre-clinical model. Our study also confirmed the pharmacological safety of this chemotherapeutic plus phytoactive combination using acute and chronic toxicity studies in Swiss albino mice. Subsequently, the molecular docking analysis of curcumin binding to TS demonstrated the affinity of curcumin towards the cofactor-binding site of TS, rather than the substrate-binding site, where 5-FU binds. Our concomitant in vivo and in silico evidence substantiates the superior therapeutic index of this combination. CONCLUSION: This is the first-ever pre-clinical study portraying TS as the critical target of combinatorial therapy for mammary carcinomas and therefore we recommend its clinical validation, especially in TNBC patients, who currently have limited therapeutic options.

5.
Cell Death Discov ; 7(1): 80, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33854056

RESUMO

Cellular transformation is a major event that helps cells to evade apoptosis, genomic instability checkpoints, and immune surveillance to initiate tumorigenesis and to promote progression by cancer stem cell expansion. However, the key molecular players that govern cellular transformation and ways to target cellular transformation for therapy are poorly understood to date. Here we draw key evidences from the literature on K-Ras-driven cellular transformation in the context of apoptosis to shed light on the key players that are required for cellular transformation and explain how aiming p53 could be useful to target cellular transformation. The defects in key apoptosis regulators such as p53, Bax, and Bak lead to apoptosis evasion, cellular transformation, and genomic instability to further lead to stemness, tumorigenesis, and metastasis via c-Myc-dependent transcription. Therefore enabling key apoptotic checkpoints in combination with K-Ras inhibitors will be a promising therapeutic target in cancer therapy.

6.
Cell Prolif ; 53(1): e12710, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31663659

RESUMO

OBJECTIVE: Clinical trials have demonstrated the efficacy of indigo naturalis, a traditional Chinese medicine ingredient, against psoriasis, a skin disease characterized by keratinocyte hyperproliferation and inflammation. The present study investigates the efficacy of tryptanthrin, a bioactive compound in indigo naturalis, against non-melanoma skin cancer (NMSC) and the signalling events involved. METHODS: Efficacy of tryptanthrin against NMSC was assessed using DMBA/PMA-induced skin carcinogenesis model in Swiss albino mice. Immunostaining for PCNA and ki-67 was used to mark proliferating cells in tissues. Haematoxylin and eosin staining and toluidine staining were employed to assess inflammation, and TUNEL assay was used to detect apoptosis in tissues. The signalling events were evaluated using Western blot, imunohistochemistry and immunofluorescence staining. MTT assay and clonogenic assay were performed to assess the viability and proliferation of cancer cells, in vitro. RESULTS: In mice, topical application of tryptanthrin suppressed skin carcinogenesis. It attenuated inflammation, impeded the proliferation of hair follicle (HF) cells and suppressed the activation of ß-catenin, a major driver of HF cell proliferation. Additionally tryptanthrin suppressed the activation of ERK1/2 and p38, both of which promote ß-catenin activation and lowered the expression of c-Myc and cyclin-D1. Tryptanthrin suppressed the proliferation of the human NMSC cell line, A431 and abrogated EGF-induced activation of ß-catenin and subsequent cytoskeletal rearrangement. CONCLUSION: The study demonstrates with molecular evidence that tryptanthrin is an effective suppressor of NMSC.


Assuntos
Quinazolinas/farmacologia , Neoplasias Cutâneas/prevenção & controle , Animais , Ensaios de Seleção de Medicamentos Antitumorais , Antígeno Ki-67/metabolismo , Camundongos , Proteínas de Neoplasias/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Acetato de Tetradecanoilforbol/toxicidade , Ácido gama-Aminobutírico/análogos & derivados , Ácido gama-Aminobutírico/toxicidade
8.
Ann Med ; 48(3): 149-61, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26911282

RESUMO

Human Papilloma Virus (HPV) is one of the most common sexually transmitted pathogen, globally. Oncogenic types of HPV are the causative agents of many neoplastic diseases, including cervical cancer, which ranks as the most common cancer affecting females in developing countries. HPV infection of the cervical epithelium and the subsequent integration of viral DNA into the host genome are the major risk factors for cervical cancer. The scientific discovery of HPV as the causal agent of cervical cancer has led to the development of HPV-based diagnostic tools. Prophylactic vaccines, based on the oncogenic HPV type virus-like particles have been introduced in several developed countries as a preliminary preventive approach. Nevertheless, it remains a continuous threat to women in developing countries, where the prophylactic vaccines are unaffordable and organized screening programmes are lacking. This warrants implementation of prevention strategies that will reduce cervical cancer-related mortality. In this review, we have discussed molecular pathogenesis of HPV infection and the risk factors associated with it. The diagnosis, treatment and prevention strategies of HPV-related cervical cancer have also been discussed.


Assuntos
Proteínas Oncogênicas Virais/metabolismo , Papillomaviridae/metabolismo , Infecções por Papillomavirus , Infecções Sexualmente Transmissíveis/terapia , Neoplasias do Colo do Útero/terapia , DNA Viral/isolamento & purificação , DNA Viral/metabolismo , Países em Desenvolvimento , Erradicação de Doenças/métodos , Detecção Precoce de Câncer/métodos , Feminino , Humanos , Programas de Rastreamento/métodos , Papillomaviridae/genética , Papillomaviridae/imunologia , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/diagnóstico , Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus/uso terapêutico , Prevalência , Fatores de Risco , Infecções Sexualmente Transmissíveis/diagnóstico , Infecções Sexualmente Transmissíveis/prevenção & controle , Infecções Sexualmente Transmissíveis/virologia , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/prevenção & controle , Neoplasias do Colo do Útero/virologia
9.
Biofactors ; 41(6): 431-42, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26643788

RESUMO

Benzo[a]pyrene is a procarcinogen present in environment and cigarette smoke, which could be bio-transformed in vivo to B[a]PDE, a potent carcinogen known to form DNA adducts and induce mutations. We observed that curcumin, a known chemopreventive, could significantly inhibit the survival of lung cancer cells exposed to B[a]PDE. It also downregulates B[a]PDE-induced nuclear translocation of NF-κB as assessed by Electrophoretic Mobility Shift Assay (EMSA) and NF-κB-dependent reporter gene assay. Ames assay demonstrated its ability to revert the mutagenic property of benzo[a]pyrene. These observations prompted us to evaluate the efficacy of curcumin in preventing B[a]P-induced lung carcinogenesis in vivo and to explore the molecular mechanism associated with it. The average number of tumor nodules present in the lungs of the Swiss albino mice, which received benzo[a]pyrene, was significantly high compared to that received curcumin as 2% diet along with B[a]P. Curcumin treatment significantly reverted histopathological deviations in the lung tissues due to benzo[a]pyrene ingestion. Moreover, curcumin diet reduced benzo[a]pyrene-induced activation of NF-κB and MAPK signaling and Cox-2 transcription in lung tissues of mice. Taken together, this study illustrates multifaceted efficacy of curcumin in preventing lung cancer.


Assuntos
Carcinogênese/genética , Curcumina/administração & dosagem , Neoplasias Pulmonares/dietoterapia , Neoplasias Pulmonares/genética , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/toxicidade , Animais , Benzo(a)pireno/toxicidade , Biotransformação , Carcinogênese/efeitos dos fármacos , Adutos de DNA/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/patologia , Camundongos , Mutagênese/efeitos dos fármacos , Mutagênese/genética , NF-kappa B/genética
10.
PLoS One ; 9(8): e104401, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25157570

RESUMO

We report mechanism-based evidence for the anticancer and chemopreventive efficacy of [6]-gingerol, the major active principle of the medicinal plant, Ginger (Zingiber officinale), in colon cancer cells. The compound was evaluated in two human colon cancer cell lines for its cytotoxic effect and the most sensitive cell line, SW-480, was selected for the mechanistic evaluation of its anticancer and chemopreventive efficacy. The non-toxic nature of [6]-gingerol was confirmed by viability assays on rapidly dividing normal mouse colon cells. [6]-gingerol inhibited cell proliferation and induced apoptosis as evidenced by externalization of phosphatidyl serine in SW-480, while the normal colon cells were unaffected. Sensitivity to [6]-gingerol in SW-480 cells was associated with activation of caspases 8, 9, 3 &7 and cleavage of PARP, which attests induction of apoptotic cell death. Mechanistically, [6]-gingerol down-regulated Phorbol Myristate Acetate (PMA) induced phosphorylation of ERK1/2 and JNK MAP kinases and activation of AP-1 transcription factor, but had only little effects on phosphorylation of p38 MAP kinase and activation of NF-kappa B. Additionally, it complemented the inhibitors of either ERK1/2 or JNK MAP kinase in bringing down the PMA-induced cell proliferation in SW-480 cells. We report the inhibition of ERK1/2/JNK/AP-1 pathway as a possible mechanism behind the anticancer as well as chemopreventive efficacy of [6]-gingerol against colon cancer.


Assuntos
Anticarcinógenos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Catecóis/farmacologia , Neoplasias do Colo/tratamento farmacológico , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Álcoois Graxos/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fator de Transcrição AP-1/metabolismo , Anticarcinógenos/química , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Carcinógenos/toxicidade , Caspases/metabolismo , Catecóis/química , Linhagem Celular Tumoral , Colo/efeitos dos fármacos , Colo/metabolismo , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/metabolismo , Neoplasias do Colo/prevenção & controle , Álcoois Graxos/química , Zingiber officinale/química , Humanos , Transdução de Sinais/efeitos dos fármacos , Acetato de Tetradecanoilforbol/toxicidade
11.
Int J Biochem Cell Biol ; 43(3): 331-41, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20883815

RESUMO

Paclitaxel is the most promising chemotherapeutic agent of plant origin despite its high cost and dose-limiting toxicity. Our earlier report has shown that cervical cancer cells can be sensitized by curcumin to paclitaxel-induced apoptosis through down-regulation of NF-κB and Akt. In the present study we have attempted to decipher the signaling pathways regulating the synergism of paclitaxel and curcumin. The study has clearly proved that Akt and NF-κB function successively in the sequence of paclitaxel induced signaling events where Akt is upstream of NF-κB. While inhibition of NF-κB led to complete inhibition of the synergism of paclitaxel and curcumin, inhibition of Akt brought about only partial reduction of the same, suggesting that, apart from Akt, there are other pathways induced by paclitaxel leading to NF-κB activation, which are also down-regulated by curcumin. Inactivation of NF-κB did not affect the activation of Akt and survivin, while that of Akt significantly inhibited NF-κB and completely inhibited up-regulation of survivin. Up-regulation of Cyclin-D1, Cox-2, XIAP and cIAP1 and phosphorylation of MAPKs, were completely inhibited on inactivation of NF-κB assigning a key regulatory role to NF-κB in the synergistic effect of paclitaxel and curcumin. While up-regulation of survivin by paclitaxel is regulated by Akt, independent of NF-κB, inactivation of neither Akt nor NF-κB produced any change in Bcl-2 level suggesting a distinct pathway for its action. As curcumin could effectively down-regulate all these survival signals induced by paclitaxel, we suggest it as a potent chemosensitizer to improve the therapeutic index of paclitaxel.


Assuntos
Curcumina/farmacologia , Regulação para Baixo/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Paclitaxel/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciclina D1/genética , Ciclina D1/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Sinergismo Farmacológico , Ativação Enzimática/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Modelos Biológicos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Survivina , Fator de Transcrição AP-1/metabolismo
12.
Mol Cancer ; 9: 220, 2010 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-20727180

RESUMO

BACKGROUND: Lung cancer is the most lethal cancer and almost 90% of lung cancer is due to cigarette smoking. Even though nicotine, one of the major ingredients of cigarette smoke and the causative agent for addiction, is not a carcinogen by itself, several investigators have shown that nicotine can induce cell proliferation and angiogenesis. We observed that the proliferative index of nicotine is different in the lung cancer cell lines H1299 (p53-/-) and A549 (p53+/+) which indicates that the mode of up-regulation of survival signals by nicotine might be different in cells with and without p53. RESULTS: While low concentrations of nicotine induced activation of NF-κB, Akt, Bcl2, MAPKs, AP1 and IAPs in H1299, it failed to induce NF-κB in A549, and compared to H1299, almost 100 times higher concentration of nicotine was required to induce all other survival signals in A549. Transfection of WT-p53 and DN-p53 in H1299 and A549 respectively, reversed the mode of activation of survival signals. Curcumin down-regulated all the survival signals induced by nicotine in both the cells, irrespective of their p53 status. The hypothesis was confirmed when lower concentrations of nicotine induced NF-κB in two more lung cancer cells, Hop-92 and NCI-H522 with mutant p53 status. Silencing of p53 in A549 using siRNA made the cells susceptible to nicotine-induced NF-κB nuclear translocation as in A549 DN-p53 cells. CONCLUSIONS: The present study reveals a detrimental role of nicotine especially in lung cancer patients with impaired p53 status and identifies curcumin as a potential chemopreventive.


Assuntos
Curcumina/farmacologia , Regulação para Baixo/efeitos dos fármacos , Neoplasias Pulmonares/metabolismo , Nicotina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclina D1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Humanos , Neoplasias Pulmonares/patologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição AP-1/metabolismo
13.
J Cell Mol Med ; 14(3): 636-46, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19183244

RESUMO

We report mechanism-based evidence for the anticancer efficacy of a protein fraction, SF2 (Sesbania fraction 2) isolated from the flower of the medicinal plant, Sesbania grandiflora (S. grandiflora). The fraction was evaluated in two murine ascites tumour cell lines and human cancer cell lines of different origin for its anticancer effect. SF2 inhibited cell proliferation and induced apoptosis as demonstrated by DNA fragmentation and externalization of phosphatidyl serine in Daltons lymphoma ascites (DLA) and colon cancer cells (SW-480). Sensitivity to SF2 in these cells was associated with activation of caspases 3, 8 and 9, poly (ADP-ribose) polymerase cleavage and cytochrome C release which attests apoptosis induced cell death. Mechanistically, SF2 down-regulated phorbol myristate acetate (PMA) induced NF-kappaB, a transcription factor which controls the expression of genes encoding proteins involved in cell regulation and growth control. Additionally, SF2 also down-regulated anti-apoptotic factors such as Bcl-2, p-Akt and cyclooxygenase-2 induced by the tumour promoter PMA suggestive of a possible explanation for its anticancer effect. In vivo studies using ascites and solid tumour models strongly support in vitro findings as SF2 administration increased the life span and decreased the tumour volume in mice bearing tumour. In vivo toxicological evaluation revealed the pharmacological safety of SF2 and may serve as a potential anticancer drug candidate.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Experimentais/tratamento farmacológico , Proteínas de Plantas/farmacologia , Sesbania/química , Animais , Antineoplásicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Western Blotting , Caspases/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citocromos c/metabolismo , Ativação Enzimática/efeitos dos fármacos , Flores/química , Humanos , Masculino , Camundongos , NF-kappa B/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias Experimentais/patologia , Neoplasias Experimentais/prevenção & controle , Fitoterapia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Proteínas de Plantas/isolamento & purificação , Plantas Medicinais/química , Poli(ADP-Ribose) Polimerases/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Resultado do Tratamento
14.
J Biol Chem ; 280(8): 6301-8, 2005 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-15590651

RESUMO

Taxol is the best anticancer agent that has ever been isolated from plants, but its major disadvantage is its dose-limiting toxicity. In this study, we report with mechanism-based evidence that curcumin, a nontoxic food additive commonly used by the Indian population, sensitizes tumor cells more efficiently to the therapeutic effect of Taxol. A combination of 5 nm Taxol with 5 microm curcumin augments anticancer effects more efficiently than Taxol alone as evidenced by increased cytotoxicity and reduced DNA synthesis in HeLa cells. Furthermore, our results reveal that this combination at the cellular level augments activation of caspases and cytochrome c release. This synergistic effect was not observed in normal cervical cells, 293 cells (in which Taxol down-regulates nuclear factor-kappaB (NF-kappaB)), or HeLa cells transfected with inhibitor kappaBalpha double mutant (IkappaBalpha DM), although the transfection itself sensitized the cells to Taxol-induced cytotoxicity. Evaluation of signaling pathways common to Taxol and curcumin reveals that this synergism was in part related to down-regulation of NF-kappaB and serine/threonine kinase Akt pathways by curcumin. An electrophoretic mobility shift assay revealed that activation of NF-kappaB induced by Taxol is down-regulated by curcumin. We also noted that curcumin-down-regulated Taxol induced phosphorylation of the serine/threonine kinase Akt, a survival signal which in many instances is regulated by NF-kappaB. Interestingly, tubulin polymerization and cyclin-dependent kinase Cdc2 activation induced by Taxol was not affected by curcumin. Altogether, our observations indicate that Taxol in combination with curcumin may provide a superior therapeutic index and advantage in the clinic for the treatment of refractory tumors.


Assuntos
Apoptose/efeitos dos fármacos , Curcumina/farmacologia , NF-kappa B/genética , Paclitaxel/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Tubulina (Proteína)/metabolismo , Proteína Quinase CDC2/efeitos dos fármacos , Dimerização , Regulação para Baixo , Sinergismo Farmacológico , Células HeLa , Humanos , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais/efeitos dos fármacos , Tubulina (Proteína)/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...